
Productive GPU Software This conference uses integrated audio. To interact with the host, you need
a working microphone and speakers.

To speak, please click on the “Raise Hand” button in the Participants box.
You can speak into your microphone after the host allows you to.

If you cannot hear the host, or if your voice is not being transmitted,
please let us know using the Chat window.

Outline

• Introduction to Jacket for MATLAB®

• GFOR

• Comparison with PCT™ alternative

• Moving into the future

• Case studies and code demos

MATLAB® and Parallel Computing Toolbox™ (PCT) are trademarks of MathWorks®

n = 20e6; % 20 million random samples

X = grand(1,n,’gdouble’);

Y = grand(1,n,’gdouble’);

distance_to_origin = sqrt(X.*X + Y.*Y);

is_inside = (distance_to_origin <= 1);

pi = 4 * sum(is_inside) / n;

Easy GPU Acceleration of M code

Matrix Types

gdouble
double precision

gsingle
single precision

glogical
boolean

gint#
integers

guint#
unsigned integers

Matrix Types: ND Support

vectors

matrices

volumes … ND

Matrix Types: Easy Manipulation

A(1,:)

A(end,1)

A(1,1)

A(end,:)

A(:,:,2)

Easy GPU Acceleration of M code

n = 20e6; % 20 million random samples

X = grand(1,n);

Y = grand(1,n);

distance_to_origin = sqrt(X.*X + Y.*Y);

is_inside = (distance_to_origin <= 1);

pi = 4 * sum(is_inside) / n;

No GPU-specific stuff involved (no kernels, no
threads, no blocks, just regular M code)

“Very little recoding was needed to promote our Lattice Boltzmann Model
code to run on the GPU.” –Dr. Kevin Tubbs, HPTi

Easy GPU Acceleration of M code

GFOR – Parallel FOR-loop for GPUs

• Like a normal FOR-loop, but faster

 for i = 1:3

 C(:,:,i) = A(:,:,i) * B;

Regular FOR-loop (3 serial kernel launches)

 gfor i = 1:3

 C(:,:,i) = A(:,:,i) * B;

Parallel GPU FOR-loop (only 1 kernel launch)

Example: Matrix Multiply

*

B A(:,:,i)

iteration i = 1

C(:,:,i)

=

 for i = 1:3

 C(:,:,i) = A(:,:,i) * B;

Regular FOR-loop (3 serial kernel launches)

Example: Matrix Multiply

*

B A(:,:,i)

iteration i = 1

C(:,:,i)

= *

B A(:,:,i)

iteration i = 2

C(:,:,i)

=

 for i = 1:3

 C(:,:,i) = A(:,:,i) * B;

Regular FOR-loop (3 serial kernel launches)

Example: Matrix Multiply

*

B A(:,:,i)

iteration i = 1

C(:,:,i)

= *

B A(:,:,i)

iteration i = 2

C(:,:,i)

= *

B A(:,:,i)

iteration i = 3

C(:,:,i)

=

 for i = 1:3

 C(:,:,i) = A(:,:,i) * B;

Regular FOR-loop (3 serial kernel launches)

simultaneous iterations i = 1:3

B A(:,:,1:3) C(:,:,1:3)

* =
* =

* =

Example: Matrix Multiply

 gfor i = 1:3

 C(:,:,i) = A(:,:,i) * B;

Parallel GPU FOR-loop (only 1 kernel launch)

simultaneous iterations i = 1:3

*

B A(:,:,1) C(:,:,1)

=

Example: Matrix Multiply

 gfor i = 1:3

 C(:,:,i) = A(:,:,i) * B;

Parallel GPU FOR-loop (only 1 kernel launch)

Example: Summing over Columns

• Think of gfor as “syntactic sugar” to write
vectorized code in an iterative style.

 for i = 1:3

 A(i) = sum(B(:,i));

 gfor i = 1:3

 A(i) = sum(B(:,i));

Three passes to sum all columns of B

One pass to sum all columns of B

Both equivalent to “sum(B)”,
but latter is faster (more

explicitly written)

y = gzeros(5, 5, n);

for i = 1:n,

 gselect(i); % choose GPU for this iteration

 x = grand(5,5); % add work to GPU’s queue

 y(:,:,i) = fft(x); % more work in queue

end

% all GPUs are now computing simultaneously, until done

Easy Multi GPU Scaling

Technology Stack
• A full system making

 optimizations for you

• Including

– “Core” brains

– “JIT” speed

– “Calls” heavy-lifting

runtime
 memory mgt
 binary handling
 GPU-multiplex
 thread mgt

core

JIT Engine(s)

plus.mex

minus.mex

bsxfun.mex

tan.mex

times.mex

power.mex

Calls (library routines + JIT)

fft.mex

fft2.mex

bessel.mex

conv2.mex

convn.mex

find.mex

sum.mex

subsasgn.mex

mldivide.mex

lu.mex

http://www.accelereyes.com/case_studies

17X

Neuro-imaging

Georgia Tech

20X

Video Processing

Google

12X

Medical Devices

Spencer Tech

5X

Weather Modeling

NCAR

35X

Power Engineering

IIT India

17X

Track Bad Guys

BAE

Systems

70X

Drug Delivery

Georgia Tech

35X

Bioinformatics

Leibniz

20X

Bio-Research

CDC

45X

Radar Imaging

System Planning

Automated Optimizations

300 cycles
one-way

GPU
Memory

GPU
Cores

A = sin(x + y).^2

CPU

Automated Optimizations

300 cycles
one-way

GPU
Memory

GPU
Cores

A = sin(x + y).^2

CPU
Optimized via

async transfer and
smart copy

Optimized via
runtime

Compare versus PCT

A = sin(x + y).^2

PCT
Load x, y (300 cycles)
+ (4 cycles)
Store Temp1 (300 cycles)
Load Temp1 (300 cycles)
Sin (~20 cycles)
Store Temp2 (300 cycles)
Load Temp2 (300 cycles)
.^ (~10 cycles)
Store A (300 cycles)

Jacket
Load x, y (300 cycles)
Sin(x+y).^2 (34 cycles)
Store A (300 cycles)

MATLAB and PCT are products and trademarks of MathWorks.

parallel computing toolbox™

Compare versus PCT

A = sin(x + y).^2

PCT
Load x, y (300 cycles)
+ (4 cycles)
Store Temp1 (300 cycles)
Load Temp1 (300 cycles)
Sin (~20 cycles)
Store Temp2 (300 cycles)
Load Temp2 (300 cycles)
.^ (~10 cycles)
Store A (300 cycles)

Jacket
Load x, y (300 cycles)
Sin(x+y).^2 (34 cycles)
Store A (300 cycles)

1834 cycles

634 cycles

parallel computing toolbox™

MATLAB® and PCT™ are products and trademarks of MathWorks.

Compare versus PCT

A = sin(x + y).^2

PCT
Load x, y (300 cycles)
+ (4 cycles)
Store Temp1 (300 cycles)
Load Temp1 (300 cycles)
Sin (~20 cycles)
Store Temp2 (300 cycles)
Load Temp2 (300 cycles)
.^ (~10 cycles)
Store A (300 cycles)

Jacket
Load x, y (300 cycles)
Sin(x+y).^2 (34 cycles)
Store A (300 cycles)

1834 cycles

634 cycles

Theoretically, a 3x
increase. Actually, a

20x difference:
• Legacy Java system
• Better GPU code

parallel computing toolbox™

Jacket has 10X more functions…

reductions
• sum, min, max,

any, all, nnz, prod
• vectors, columns,

rows, etc

convolutions
• 2D, 3D, ND

dense linear algebra
• LU, QR, Cholesky,

SVD, Eigenvalues,
Inversion, det,
Matrix Power,
Solvers

FFTs
• 2D, 3D, ND

image processing
• filter, rotate, erode,

dilate, bwmorph,
resize, rgb2gray

• hist, histeq

interp and rescale
• vectors, matrices
• rescaling

sorting
• along any dimension
• find

and many more…

gfor (loops) gcompile (fine-grain) gselect (multi-GPU)

help
• gprofview

Easy To Maintain

• Write your code once and let Jacket carry you
through the coming hardware evolution.

– Each new Jacket release improves the speed of
your code, without any code modification.

– Each new Jacket release leverages latest GPU
hardware (e.g. Fermi, Kepler), without any code
modification.

New in Jacket 2.1: Optimization

• Unconstrained Optimization in 2.1

– Gradient Descent and BFGS methods

– Jacobian computation with GFOR

• Batched-mode Optimization in 2.2

• Search-based Optimization in 2.2

• Constrained Optimization in 2.3

Sparse Roadmap
Current functions supported:

• Matrix multiply

• Triangular matrix solve

• Iterative solvers with no pre-conditioning.

• Examples: CG, BICG, BICGSTAB, BICGSTABL, GMRES, LSQR

Under development:

• Iterative solvers with pre-conditioning and improved performance

• Examples: CG, BICG, BICGSTAB, GMRES

Move to C/C++, Fortran, or Python

The World’s Largest, Fastest GPU Library

ArrayFire GPU library

• Free version for most users (single GPU usage)

• Pro version (multi-GPU usage)

• Available for CUDA or OpenCL devices

ArrayFire Example (C++)

#include <stdio.h>

#include <arrayfire.h>

using namespace af;

int main() {

 // 20 million random samples

 int n = 20e6;

 array x = randu(n,1), y = randu(n,1);

 // how many fell inside unit circle?

 float pi = 4 * sum<float>(sqrt(mul(x,x)+mul(y,y))<1) / n;

 printf("pi = %g\n", pi);

 return 0;

}

Case Studies

See more examples:
http://www.accelereyes.com/examples/case_studies

http://blog.accelereyes.com/blog/

Case Study: Australian Brokerage

• Description: Nonlinear regressive model
fitting

• Speedup: 115x

• Solution: Jacket, Jacket DLA, ArrayFire Pro,
Consulting

Case Study: Australian Brokerage

• Description: Modified conjugate gradient for
sparse matrices

• Speedup: 10-30x (Depends on data size.
Larger data gives bigger speedups.)

• Solution: Jacket, Jacket SLA, ArrayFire Pro,
Consulting

Case Study: Koch Industries

• Description: Option pricing based on Monte-
Carlo simulation

• Speedup: 60 - 70x

• Solution: Jacket

Case Study: Bank of America

• Description: Visualization of server utilization
and workloads, required to run in MATLAB®

• Focus only on visualization, not computation

• Result: Beautiful OpenGL 3D renderings

• Solution: Jacket with the Graphics Library

Automotive Trader Example

• Description: Algorithmic trading

• Speedup: 37x on 3 GPUs (14x on 1 GPU)

• Solution: Jacket, Jacket MGL for 3 GPUs

• Learn more:
http://www.automatedtrader.net/articles/software-
review/107768/mashup

Demos

Discussion

Faster MATLAB® through GPU computing

