
Productive GPU Software This conference uses integrated audio. To interact with the host, you need 
a working microphone and speakers. 
 

To speak, please click on the “Raise Hand” button in the Participants box. 
You can speak into your microphone after the host allows you to. 
 

If you cannot hear the host, or if your voice is not being transmitted, 
please let us know using the Chat window. 



Outline 

• Introduction to Jacket for MATLAB® 

• GFOR 

• Comparison with PCT™ alternative 

• Moving into the future 

• Case studies and code demos 

MATLAB® and Parallel Computing Toolbox™ (PCT) are trademarks of MathWorks® 



n = 20e6;  % 20 million random samples 

X = grand(1,n,’gdouble’); 

Y = grand(1,n,’gdouble’); 

distance_to_origin = sqrt( X.*X + Y.*Y ); 

is_inside = (distance_to_origin <= 1); 

pi = 4 * sum(is_inside) / n; 

Easy GPU Acceleration of M code 



Matrix Types 

gdouble 
double precision 

gsingle 
single precision 

glogical 
boolean 

gint# 
integers 

guint# 
unsigned integers 



Matrix Types: ND Support 

vectors 

matrices 

volumes … ND 



Matrix Types: Easy Manipulation 

A(1,:) 

A(end,1) 

A(1,1) 

A(end,:) 

A(:,:,2) 



Easy GPU Acceleration of M code 

n = 20e6;  % 20 million random samples 

X = grand(1,n); 

Y = grand(1,n); 

distance_to_origin = sqrt( X.*X + Y.*Y ); 

is_inside = (distance_to_origin <= 1); 

pi = 4 * sum(is_inside) / n; 



No GPU-specific stuff involved (no kernels, no 
threads, no blocks, just regular M code) 
 
 

“Very little recoding was needed to promote our Lattice Boltzmann Model 
code to run on the GPU.” –Dr. Kevin Tubbs, HPTi 

Easy GPU Acceleration of M code 



GFOR – Parallel FOR-loop for GPUs 

• Like a normal FOR-loop, but faster 

 for i = 1:3 

     C(:,:,i) = A(:,:,i) * B; 

Regular FOR-loop (3 serial kernel launches) 

 gfor i = 1:3 

     C(:,:,i) = A(:,:,i) * B; 

Parallel GPU FOR-loop (only 1 kernel launch) 



Example:  Matrix Multiply 
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Regular FOR-loop (3 serial kernel launches) 



Example:  Matrix Multiply 

* 

B A(:,:,i) 

iteration i = 1 

C(:,:,i) 

= * 

B A(:,:,i) 

iteration i = 2 

C(:,:,i) 

= 

 for i = 1:3 

     C(:,:,i) = A(:,:,i) * B; 

Regular FOR-loop (3 serial kernel launches) 



Example:  Matrix Multiply 

* 

B A(:,:,i) 

iteration i = 1 

C(:,:,i) 

= * 

B A(:,:,i) 

iteration i = 2 

C(:,:,i) 

= * 

B A(:,:,i) 

iteration i = 3 

C(:,:,i) 

= 

 for i = 1:3 

     C(:,:,i) = A(:,:,i) * B; 

Regular FOR-loop (3 serial kernel launches) 



simultaneous iterations i = 1:3 

B A(:,:,1:3) C(:,:,1:3) 

* = 
* = 

* = 

Example:  Matrix Multiply 

 gfor i = 1:3 

     C(:,:,i) = A(:,:,i) * B; 

Parallel GPU FOR-loop (only 1 kernel launch) 



simultaneous iterations i = 1:3 

* 

B A(:,:,1) C(:,:,1) 

= 

Example:  Matrix Multiply 

 gfor i = 1:3 

     C(:,:,i) = A(:,:,i) * B; 

Parallel GPU FOR-loop (only 1 kernel launch) 



Example:  Summing over Columns 

• Think of gfor as “syntactic sugar” to write 
vectorized code in an iterative style. 

 for i = 1:3 

     A(i) = sum(B(:,i)); 

 gfor i = 1:3 

     A(i) = sum(B(:,i)); 

Three passes to sum all columns of B 

One pass to sum all columns of B 

Both equivalent to “sum(B)”, 
but latter is faster (more 

explicitly written) 



y = gzeros( 5, 5, n ); 

for i = 1:n, 

    gselect(i);            % choose GPU for this iteration 

    x = grand(5,5);        % add work to GPU’s queue 

    y(:,:,i) = fft(x);     % more work in queue 

end 

 

% all GPUs are now computing simultaneously, until done 

Easy Multi GPU Scaling 



Technology Stack 
• A full system making 

    optimizations for you 

• Including 

– “Core” brains 

– “JIT” speed 

– “Calls” heavy-lifting 

runtime 
  memory mgt 
  binary handling 
  GPU-multiplex 
  thread mgt 

core 

JIT Engine(s) 

plus.mex 

minus.mex 

bsxfun.mex 

tan.mex 

times.mex 

power.mex 

Calls (library routines + JIT) 

fft.mex 

fft2.mex 

bessel.mex 

conv2.mex 

convn.mex 

find.mex 

sum.mex 

subsasgn.mex 

mldivide.mex 

lu.mex 



http://www.accelereyes.com/case_studies 

17X 

Neuro-imaging 

Georgia Tech 

20X 

Video Processing 

Google 

12X 

Medical Devices 

Spencer Tech 

5X 

Weather Modeling 

NCAR 

35X 

Power Engineering 

IIT India 

17X 

Track Bad Guys 

BAE 

Systems 

70X 

Drug Delivery 

Georgia Tech 

35X 

Bioinformatics 

Leibniz 

20X 

Bio-Research 

CDC 

45X 

Radar Imaging 

System Planning 



Automated Optimizations 

300 cycles 
one-way 

GPU 
Memory 

GPU 
Cores 

A = sin( x + y ).^2 

CPU 



Automated Optimizations 

300 cycles 
one-way 

GPU 
Memory 

GPU 
Cores 

A = sin( x + y ).^2 

CPU 
Optimized via 

async transfer and 
smart copy 

Optimized via 
runtime 



Compare versus PCT 

A = sin( x + y ).^2 

PCT 
Load x, y (300 cycles) 
+ (4 cycles) 
Store Temp1 (300 cycles) 
Load Temp1 (300 cycles) 
Sin (~20 cycles) 
Store Temp2 (300 cycles) 
Load Temp2 (300 cycles) 
.^ (~10 cycles) 
Store A (300 cycles) 

Jacket 
Load x, y (300 cycles) 
Sin( x+y ).^2 (34 cycles) 
Store A (300 cycles) 

MATLAB and PCT are products and trademarks of MathWorks. 

parallel computing toolbox™ 
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Compare versus PCT 

A = sin( x + y ).^2 

PCT 
Load x, y (300 cycles) 
+ (4 cycles) 
Store Temp1 (300 cycles) 
Load Temp1 (300 cycles) 
Sin (~20 cycles) 
Store Temp2 (300 cycles) 
Load Temp2 (300 cycles) 
.^ (~10 cycles) 
Store A (300 cycles) 

Jacket 
Load x, y (300 cycles) 
Sin( x+y ).^2 (34 cycles) 
Store A (300 cycles) 

1834 cycles 

634 cycles 

Theoretically, a 3x 
increase.  Actually, a 

20x difference: 
• Legacy Java system 
• Better GPU code 

parallel computing toolbox™ 



Jacket has 10X more functions… 

reductions  
• sum, min, max, 

any, all, nnz, prod 
• vectors, columns, 

rows, etc 

convolutions 
• 2D, 3D, ND 

dense linear algebra 
• LU, QR, Cholesky, 

SVD, Eigenvalues, 
Inversion, det, 
Matrix Power, 
Solvers 

FFTs 
• 2D, 3D, ND 

image processing 
• filter, rotate, erode,  

dilate, bwmorph,  
resize, rgb2gray 

• hist, histeq 

interp and rescale 
• vectors, matrices 
• rescaling 

sorting 
• along any dimension 
• find 

and many more… 

gfor (loops) gcompile (fine-grain) gselect (multi-GPU) 

help 
• gprofview 



Easy To Maintain 

• Write your code once and let Jacket carry you 
through the coming hardware evolution. 

– Each new Jacket release improves the speed of 
your code, without any code modification. 

– Each new Jacket release leverages latest GPU 
hardware (e.g. Fermi, Kepler), without any code 
modification. 



New in Jacket 2.1: Optimization 

• Unconstrained Optimization in 2.1 

– Gradient Descent and BFGS methods 

– Jacobian computation with GFOR 

• Batched-mode Optimization in 2.2 

• Search-based Optimization in 2.2 

• Constrained Optimization in 2.3 



Sparse Roadmap 
Current functions supported: 

• Matrix multiply 

• Triangular matrix solve 

• Iterative solvers with no pre-conditioning. 

• Examples: CG, BICG, BICGSTAB, BICGSTABL, GMRES, LSQR 
 

Under development: 

• Iterative solvers with pre-conditioning and improved performance 

• Examples: CG, BICG, BICGSTAB, GMRES 



Move to C/C++, Fortran, or Python 

The World’s Largest, Fastest GPU Library 

ArrayFire GPU library 

• Free version for most users (single GPU usage) 

• Pro version (multi-GPU usage) 

• Available for CUDA or OpenCL devices 



ArrayFire Example (C++) 

#include <stdio.h> 

#include <arrayfire.h> 

using namespace af; 

int main() { 

    // 20 million random samples 

    int n = 20e6; 

    array x = randu(n,1), y = randu(n,1); 

    // how many fell inside unit circle? 

    float pi = 4 * sum<float>(sqrt(mul(x,x)+mul(y,y))<1) / n; 

    printf("pi = %g\n", pi); 

    return 0; 

} 



Case Studies 

See more examples: 
http://www.accelereyes.com/examples/case_studies 

http://blog.accelereyes.com/blog/ 



Case Study:  Australian Brokerage 

• Description:  Nonlinear regressive model 
fitting 

• Speedup:  115x 

• Solution:  Jacket, Jacket DLA, ArrayFire Pro, 
Consulting 



Case Study:  Australian Brokerage 

• Description:  Modified conjugate gradient for 
sparse matrices 

• Speedup:  10-30x (Depends on data size. 
Larger data gives bigger speedups.) 

• Solution:  Jacket, Jacket SLA, ArrayFire Pro, 
Consulting 



Case Study:  Koch Industries 

• Description:  Option pricing based on Monte-
Carlo simulation 

• Speedup:  60 - 70x 

• Solution:  Jacket 



Case Study:  Bank of America 

• Description:  Visualization of server utilization 
and workloads, required to run in MATLAB® 

• Focus only on visualization, not computation 

• Result:  Beautiful OpenGL 3D renderings 

• Solution:  Jacket with the Graphics Library 



Automotive Trader Example 

• Description:  Algorithmic trading 

• Speedup:  37x on 3 GPUs (14x on 1 GPU) 

• Solution:  Jacket, Jacket MGL for 3 GPUs 

• Learn more: 
http://www.automatedtrader.net/articles/software-
review/107768/mashup 



Demos 



Discussion 

Faster MATLAB® through GPU computing 


