GPU-accelerated synthesis of echo generators

A. Capozzoli, C. Curcio, A. Liseno
Universita di Napoli Federico II
Dipartimento di Ingegneria Biomedica, Elettronica e delle Telecomunicazioni
via Claudio 21, T 80125 Napoli (Italy)
Tel.: +39 081 7683358; Email: a.capozzoli@unina.it.

Abstract—We deal with an approach to the design of array-
based, 2D echo generators.
The radiating elements are located on non-uniform grids and
the Quiet Zone (QZ) design specifications are enforced at non-
uniformly spaced sampling locations. The radiating element posi-
tions and QZ design specification matching points are determined
by a singular values optimization process.
In order to properly manage the computational burden, a
proper parallel programming strategy is employed, in particular,
by exploiting the potentialities recently offered by Graphics
Processing Units (GPUs) through the Jacket Matlab toolbox.
Numerical results asses the performance of the technique in terms
of computational requirements and QZ field behavior.

I. INTRODUCTION

Many applications, as antenna characterization [1] or the
system testing of radars under their actual working conditions
[2], require the generation of “canonical” waves in prescribed
regions of space known as Quiet-Zones (QZs).

When the canonical wave of interest is a plane wave, Compact
Antenna Test Ranges (CATRs) [3] represent a commonly
employed solution, with well known drawbacks [3].

Most recently, Plane Wave Synthesizers (PWS’), i.e., arrays
purposely designed to generate prescribed waves in their near-
field regions, have been proposed [1], [4], [5]. Although
exhibiting more hardware complexity, PWS’ should permit to
significantly improve the flexibility as compared to standard
CATRs [7]. Furthermore, they are very helpful whenever the
testing of large Objects Under Test (OUTs) is required, by
avoiding likewise large QZs [1], [7]. Finally, by a similar
concept, echo generators, i.e., array systems for which the
canonical waves of interest is not only a plane wave but, more
generally, radar echoes, can be realized [5], [6].

Due to the higher complexity as compared to CATRs, the
design of a PWS or of an echo generator is not an easy task
from the computational point of view.

Commercial CPUs have now reached a clock-speed growth
standstill, as thermal dissipation prevents higher velocities due
to the required increasingly higher transistor densities [8],
[9]. This has led to a burst in the development of multi-
core processors, capable of very high processing throughputs.
Particularly, the use of off-the-shelf, Graphics Processing Units
(GPUs) for general purpose processing has recently become
increasingly popular, thanks to the virtual availability on all
desktop computers and to the release of development tools to
write algorithms for execution on GPUs.

Among such tools, the Compute Unified Device Architecture

(CUDA), released by NVIDIA in 2007, provides an extension
to ANSI C supported by several keywords and constructs [10],
enabling an easier environment to program general-purpose
applications onto the GPU. On the other side, AccelerEyes
Jacket [11] is a commercial product being developed by
AccelerEyes, allowing a standard Matlab code to be run on
the GPU, so enabling the inexperienced programmer to benefit
of GPU code acceleration, allowing to extend existing Matlab
scripts to parallel processing or quickly writing new parallel
ones.

In some applications, the ease in programming is traded-off in
terms of a slightly slower overall execution time as compared
to low level, e.g. CUDA, applications [12]. In other cases,
it has been verified that Jacket and CUDA have comparable
performance [13].

Following [5], [6], the objective of this paper is to deal with the
synthesis of 2D echo generators and determine how much the
algorithm can be improved by a very simple implementation
on a GPU+CPU platform with Matlab and the Jacket toolbox.

II. THE PROBLEM

Let us consider a time harmonic echo generator [5], [6]
composed by an array of N radiators, arranged over a panel
D, x D, sized, located in the z = 0 plane, and with the n-th
element having coordinates Q,, = («,,4,,0) and excitation
coefficient w,, (see Fig. 1).

The target of the array is radiating, in a prescribed region
of the z > 0 half space, termed the QZ, a prescribed wave.
Throughout the paper we suppose the QZ being a box, L, x
L, x L, sized, starting at z = d. We require deviations from
the desired field with tolerances of +0.5dB for the amplitude
and £+5° for the phase.

For a fixed QZ, the aim of the design procedure is to choose
the panel size, the number of radiators, their locations and
their excitation coefficients to meet the design specifications.

III. THE DESIGN PROCEDURE

We suppose to have fixed the panel size according to
the procedure in [5], [6]. Following the results in [14], The
purpose now is to satisfying the specifications on the 3D QZ
with the least number of radiators by enforcing constraints
only on the first edge of the QZ itself, namely, only on a
finite, 2D region, L, X L, sized of the plane z = d, henceforth
termed the Quiet Plane (QP).

The radiated field E at P,, can be written as

/ Radiating panel

d ;

ent

Ragdiating|e

o=
/X

¥ |Sampling point

Quiet Plane

Fig. 1. Geometry of the problem.

efjk() Rpmn

m anf mn7¢m71)R77 (1)

n=1 mn

where f is the element factor, kg is the wavenumber and
(Rmmf)m;,gﬁmn) are the spherical coordinates of P, in a
reference system with center at),, (see Fig. 1). Eq. (1) holds
true if P, is located in the far-zone region of each of the
involved radiators.
For the sake of simplicity, a scalar problem is addressed so
that the specifications concern the y-component F of the field
given by

N e~dkoRmn

n=1 mn

where f is the homologous component of E. As the element
factor, that of an open-ended waveguide (OEWG) is here
considered, so that f is the y-component of f.
Eq. (2) holds true if P, is located in the far-zone region of
each of the involved radiators. However, it has been verified
that this approximation does not affect the accuracy of the
synthesized echo generation [6].
The constraints are expressed through a point matching pro-
cedure with the desired field on a set of M sampling points
of the QP at the coordinates P,, = (%, Ym,d) (see Fig.
1). The number M and the locations P,, of such points are
also unknowns of the design approach. Point matching is here
preferred since, even by using more general testing functions,
the problem of their discretization cannot be evaded. It should
be also mentioned that, the discretization procedure of the
QP that will be described below outperforms the sampling
approach in [15], as shown in [16].
To enforce the design specifications at the M sampling points
P,,, the excitation coefficients w,, should satisfy the following
linear system

3)

[N
&
Il

S

where w is the vector containing all the element excitations,
q is the vector containing the samples of the prescribed field
on the QP and

f e~ JkoR11 f e JkoBR1N
11 Ri1 1IN Rin
A= z z @
f e~ JkoRM1 f e~ JkoBRM N
M1 Ry MN ™" Run~

where fmn = f(em,na ¢mn)

The excitation coefficients w,, are determined by means of a
Singular Value Decomposition (SVD) approach [5], [6].

The criterion leading the choice of the number and locations
of the radiators and QP sampling points is the optimization
of cond(A), the condition number of A. Since cond(A)
is the ratio between the maximum and minimum singular
values of A, this task is accomplished by making the singular
values dynamics of A flatter. Accordingly, on denoting by
T = min {M, N} and without addressing issues related to
the norm of the matrix A, the "optimal” QP and radiator grids
can be defined as those maximizing the functional

T
P =Y)

t=2

®(Q1,..-, QN 1, ..

evaluating the “area” subtended by the normalized singular
values o/07.
Concerning the choice of M, it is fixed according to saturation
criterion in [16]. Concerning the number N, in order to keep
cond(A) low, it is chosen so that N = M [6].
To reduce the computational burden and strengthen the op-
timization of ® against the traps, proper mapping functions
transforming uniform 2D lattices into non-uniform ones are
employed to represent (),, and P, by a few parameters [5],
[6]. In this way, the locations (xy,yx) of both the radiators
and QP points are represented as

(r,yk) = (M, k), 9(Eks 1)), (6)
with
R S
gknn,’c = Zzarer L (nk:) (7)
r=1 s=1
and
R S
9(& k) =D > BraLr(&)Ls(mn), ®)
r=1s=1

where (i, 1) defines a uniform lattice of (—1,1)x(—1,1),
L; is a properly defined set of basis functions (e.g., Legendre
polynomials, as employed in the numerical analysis) and s
and (3, are proper expansion coefficients.
The number of searched for parameters can be further reduced
by accounting for the reflection symmetry of the radiator
locations and QP grid around the origin. In particular,

o h can be chosen as odd with respect to £ and even with
respect to 7;

e g can be chosen as even with respect to ¢ and odd with
respect to 7.

IV. GPU ACCELERATION

Although recently cast to weak forms of multi-core architec-
turs, CPUs are essentially designed to compute scalars, aiming
at optimizing the system control with low latency instead of
high throughputs.

In the opposite, GPUs follow a Single Instruction Multiple
Data (SIMD) [10] computing pattern. In other words, thanks
to their advanced multi-core architectures and high-bandwidth
data access, GPUs executes the same instruction on data
elements concurrently, enabling the simultaneous processing
of thousands of light-weight threads and thus achieving high
computational throughputs across a large quantity of data.
AccelerEyes Jacket [11] is a Matlab toolbox running CUDA
in the background and designed to work on NVIDIA GPUs
which automatically wraps Matlab code to high performance
graphics card primitives. At runtime, the memory transfers
are optimized, the code performance are tuned and the GPU
kernels are efficiently launched.

The interpretive nature of the Matlab language is maintained
by providing transparent access to the GPU compiler, so that
all GPU-specific programming details are handled by Jacket,
freeing the user to deal with low-level (e.g., C++, CUDA)
languages. The programmer is enabled to write and run code
on the GPU in the Matlab native language.

Jacket’s variables belong to the Matlab workspace as any
other CPU Matlab variable, and all standard data types are
supported, including double precision complex type. When
operations or functions are performed on Jacket’s variables,
the execution is automatically performed on the GPU instead
of the CPU.

To illustrate the simplicity of the use of Jacket, Algorithms 1
and 2 report the Matlab and Jacket pseudo-codes, respectively,
for the evaluation of functional ®. As it can be seen, Algorithm
2 represents a minor modification of Algorithm 1, mainly
concerning the casting of the input variables by means of the
gdouble function (required since the Matlab fminunc function
only accepts inputs of data type double) and leading to their
transfer from the CPU to the GPU, or the definition of new
GPU variables by the gzeros function.

It should be noticed that in the pseudo-codes 1 and 2,
data have been packed into large scale matrices to exploit
the Matlab “vectorization” feature, namely, a feature of the
compiler allowing the same line of code to apply to scalar,
vectors or matrices (polymorphism). Indeed, Matlab performs
these vectorized operations much more efficiently than loops
and automatically multithreads some of them, also thanks
to “multicore-aware” functions [17]. In this way, the most
benefits of the availability of multi-core CPUs or GPU can
be achieved.

Algorithm 1 Multi-core CPU Matlab pseudo-code for evalu-
ating functional ®.

function ®(a’,y*,a9% 19%)

global N M.LY LY.L97 197 ko.d

X_PRIME = zeros(1,N);
Y_PRIME = zeros(1,N);
for n < N
X_PRIME(n) = sum(sum(gR.*Lf(n)));
Y_PRIME(n) = sum(sum('yR.*Lg(n)));
end

X = zeros(1,M);
Y = zeros(1,M);
for m < M
X(n) = sum(sum(a?? *L2” (m)));
Y(n) = sum(sum(y%Z #L2% (n)));
end B

[XX,XX_PRIME]=meshgrid(X,X_PRIME);
[YY,YY_PRIME]=meshgrid(Y,Y_PRIME);
Rmn=(d."2+(XX-XX_PRIME)."2+(YY-YY_PRIME)."2);
Kx = ko*(XX-XX_PRIME)./Rmn;

Ky = ko*(YY-YY_PRIME)./ Rmn;

A = f(Kx, Ky) .*exp(-j*kg * Rmn);

S=svd(A);

$=sum(S)

V. NUMERICAL RESULTS

In this Section, we report a performance analysis of the

approach concerning the two CPU and GPU implementations
and results concerning the synthesis of the echo produced by
three perfectly conducting cylinders.
The processing has been performed on a Genesis Tesla I-
7950 workstation, with a 8-core Intel CPU 17-950, working at
3.06GH z and with 6Gb of RAM. The workstation is equipped
with an Nvidia Tesla C2050, benefitting of the state-of-the-art
Fermi GPU architecture and consisting of 14 streaming mul-
tiprocessors (SMs), each containing 32 streaming processors
(SPs), or processor cores, running at 1.15G' H z. The C2050 is
further equipped with a 2.8G B, off-chip, global memory and
supports double precision arithmetics.

A. Computational performance analysis

A test case consisting of a 35\ x 24\ sized array, generating
a 20\ x 14 sized QP region at d = 35\ has been considered.
The size of both, the array panel and the QP region have
been progressively enlarged of a factor 1 < o < 2 introduced
to study the computational performance of the algorithm.
The optimization of ® is performed by the Matlab fminunc

Algorithm 2 Multi-core CPU & GPU Matlab-Jacket pseudo-
code for evaluating functional ®.

function ®(a’,y*,a9% 1?%)

global N, MLY% hLF hL9% h,L9% hko_hd_h

oy b,

o _h = gdouble(a’?);
~E_h = gdouble(y%);
29 _h = gdouble(a“?);
~QZ_h = gdouble(72%);

X_PRIME_h = gzeros(1,N, gdouble’);
Y_PRIME_h = gzeros(1,N,’gdouble’);
gfor n < N
X_PRIME_h(n) = sum(sum(gR_h.*Lﬁ_h(n)));
Y_PRIME_h(n) = sum(sum(y"_h.*L._h(n)));
end

X_h = gzeros(1,M, gdouble’);
Y_h = gzeros(1,M, gdouble’);
gfor m < M
X_h(n) = sum(sum(a®?_h.*L2% h(m)));
Y_h(n) = sum(sum(y9Z_h.*L27 _h(n)));
end

[XX_h,XX_PRIME_h]=meshgrid(X_h,X_PRIME_h);
[YY_h,YY_PRIME_h]=meshgrid(Y_h,Y_PRIME_h);
Rmn_h=(d_h."2+(XX_h-XX_PRIME_h)."2+(YY_h-
YY_PRIME _h)."2);

Kx_h = ko_h*(XX_h-XX_PRIME_h)./Rmn_h;

Ky_h = ko_h*(YY_h-YY_PRIME_h)./ Rmn_h;

A_h = f(Kx_h, Ky_h) .*exp(-j*ko_h * Rmn_h);
S_h=svd(A_h);

$=sum(S_h)

function. Accordingly, the performance in the evaluation of
functional ® is only reported.

Fig. 2 depicts the times required for the initial assignments.
Furthermore, Figs. 3 and 4 show the time required by the CPU
and GPU implementations for the evaluations of A and of its
SVD. As it can be seen, the most time consuming part is the
latter.

From these results, and considering the overall computing
time, the CPU and GPU implementations approximately per-
form the same when « is close to 1. Opposite to this, i.e.,
for very large echo generators, the speedup of the GPU
implementation as compared to the CPU ranges from 2 to
4.5, for o ranging between 1.5 and 2.

B. Design performance analysis

We now report on the results concerning the generation of
the field scattered by three, infinitely long, perfectly conduct-

Time [ms]

Fig. 2. Initial assignments. Blue solid line: X_PRIME_h+Y_PRIME_h. Blue
dashed line: X_PRIME+Y_PRIME. Red solid line: X_h+Y_h. Red dashed
line: X+Y.

Time [ms]
~

Fig. 3. Evaluation of A. Blue solid line: GPU. Blue dashed line: CPU.

Time [ms]

Fig. 4. Evaluation of A. Blue solid line: GPU. Blue dashed line: CPU.

ing cylinders having circular cross section and radius equal to
a = 5\, with reciprocal center spacing of d.,; = 15\ (see
Fig. 5). A test case consisting of a 35\ x 35\ sized array
of 253 radiating elements, generating a 22\ x 22\ sized QP
region at d = 35\ has been dealt with. The cylinders’ axes
are assumed to be parallel to the y-axis, they are illuminated
by an orthogonally impinging plane wave leading to a fully
2D scalar problem, while the reciprocal distance to the QP is
d = 300\. Under the these circumstances, the spatial spectrum
of the field impinging on the QP contains plane waves with
maximum impinging angles ¢ of up to approximately 2.9°.

It has been verified that the synthesized echo generator is
capable of generating the scattered field within the required ac-
curacy. Figs. 6 and 7 compare the behavior of the synthesized
versus desired scattered field amplitude and phase respectively,
for a cut along the x-axis. Of course, the phase inaccuracies
correspond to the regions with the least field amplitude values.
We remark that this approach has proved to be robust against
uncertainties in the radiator locations and excitations, see [6].

Scattered field

QP

Impinging plane wave

M

Fig. 5. Geometry relevant to the generation of the field scattered by three
perfectly conducting cylinders.

QP field [dB]

Fig. 6. Scattered field generation: cuts along the x-axis of the desired (dahsed
line) and synthesized (solid line) field amplitudes over the QP. The vertical
line denotes the QP boundary.

VI. CONCLUSIONS & FUTURE DEVELOPMENTS

We have presented an approach to the design of array-based,
2D echo generators.
The computational burden has been easily and properly man-
aged by a parallel programming on GPUs through the Jacket
Matlab toolbox. Numerical results have assessed the perfor-
mance of the technique in terms of computational requirements
and QZ field behavior.
Future activities will regard the development of a time-domain
echo generator and dealing with the issue of the mutual
coupling between the array elements.

QP field [degrees]

Fig. 7. Scattered field generation: cuts along the xz-axis of the desired (dahsed
line) and synthesized (solid line) field phases over the QP. The vertical line
denotes the QP boundary.

REFERENCES
[1

—

A.W. Rudge, K. Milne, A.D. Olver, P. Knight, The handbook of antenna

design, London, Peter Peregrinus, 1982.

M. Ciattaglia, A. De Luca, L. Infante, S. Mosca, M. Albani, “Near field

techniques for radar synthetic environment simulator”, Proc. of the Int.

Conf. on Electromagn. in Adv. Appl., Turin, Italy, Sept. 17-21, 2007, pp.

780-783.

[3] A.D. Olver, "Compact antenna test ranges”, Proc. of the 7th Int. Conf.
on Antennas Prop. (ICAP), York, UK, Apr. 15-18, 1991, pp. 99-108.

[4] A. Capozzoli, G. D’Elia, ”On the plane wave synthesis in the near-field
zone”, Proc. of the Int. Conf. on Antenna Tech., Ahmedabad, India, Feb.
23-24, 2005, 273-277.

[S] A. Capozzoli, C. Curcio, G. D’Elia, A. Liseno, P. Vinetti, "A novel
approach to the design of generalized plane-wave synthesizers”, Proc.
of the 3rd Europ. Conf. on Antennas Prop., Berlin, Germany, Mar. 23-27,
2009, CD ROM.

[6] A. Capozzoli, C. Curcio, A. Liseno, “"Time-harmonic echo generation”,
accepted for publication on IEEE Trans. Antennas Prop..

[7] C.C. Courtney, D.E. Voss, R. Haupt, L. LeDuc, “The theory and ar-
chitecture of a plane-wave generator”, Proc. of the 24th AMTA Symp.,
Cleveland, Ohio, Nov. 3-8, 2002, pp. 353-358.

[8] P. Wendykier, J.G. Nagy, "Parallel Colt: A high-Performance Java library
for scientific computing and image processing”, ACM Trans. on Math.
Soft., vol. 37, n. 3, pp. 31:1-31:22, Sept. 2010.

[9] www.accelereyes.com/content/collateral/GPUAcceleratedISAR_ver2.pdf

[10] D.B. Kirk, W.W. Hwu, Programming massively parallel processors,
Morgan Kaufmann, Burlington, MA, 2010.

[11] www.accelereyes.com.

[12] N.A. Davis, A. Pandey, B.A. McKinney, “Real-world comparison of
CPU and GPU implementations of SNPrank: a network analysis tool for
GWAS?”, Bioinformatics 2010: doi: 10.1093/bioinformatics/btq638, Nov.
2010.

[13] Y. Lin, R.A. Renaut, “The application of projected conjugate gradient
solvers on Graphical Processing Units”, submitted for publication to
Parallel Computing, submitted for publication.

[14] A. Capozzoli, C. Curcio, G. D’Elia, A. Liseno, ”"On the sampling of
electromagnetic fields”, Proc. of the URSI Int. Symp. on Electromagnetic
Theory, Berlin, Germany, Aug. 16-19, 2010, pp. 185-188.

[15] O.M. Bucci, C. Gennarelli, C. Savarese, "Representation of electromag-
netic fields over arbitrary surfaces by a finite and nonredundant number
of samples”, IEEE Trans. Antennas Prop., vol. 46, n. 3, pp. 351-359,
Mar. 1998.

[16] A. Capozzoli, C. Curcio, A. Liseno, P. Vinetti, "Field sampling and field
reconstruction: a new perspective”, Radio Sci., vol. 45, RS6004, 31 pp.,
2010, doi:10.1029/2009RS004298.

[17] G. Sharma, J. Martin, MATLAB®: A language for parallel computing,

Int. J. Parallel Prog., vol. 37, n. 1, pp. 3-36, 2009.

[2

—

